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A NULL CONTROLLABILITY PROBLEM WITH A
FINITE NUMBER OF CONSTRAINTS ON THE
NORMAL DERIVATIVE FOR THE SEMILINEAR HEAT
EQUATION

CAROLE LOUIS-ROSE

ABSTRACT. We consider the semilinear heat equation in a bounded
domain of R™. We prove the null controllability of the system
with a finite number of constraints on the normal derivative, when
the control acts on a bounded subset of the domain. First, we
show that the problem can be transformed into a null controlla-
bility problem with constraint on the control, for a linear system.
Then, we use an appropriate observability inequality to solve the
linearized problem. Finally, we prove the main result by means of

a fixed-point method.

1. INTRODUCTION

Let m € N\{0} and let Q2 C R™ be a bounded domain with boundary
I of class C?. Let also w be a non empty subdomain of Q and I'y a non
empty part of I'. For a time 7" > 0,set Q = Q2 x (0,7), X =T x (0,7,
Y =T0x(0,7)and G = w x (0,T). Consider the following system of
semilinear heat equation:

Y _Ay+fly) = oxo nQ,
(1) y|2 - 07
y(0) = 3 inQ,

where f is a function of class C* on R, 3° € L*(Q), v € L*(G) represents
the control function and Y, is the characteristic function of w, the set
where controls are supported. The function f is assumed to be globally
Lipschitz all along the paper, i.e. there exists K > 0 such that

(2) [f(2) = f(2)] < K|z — 2|, Ve, z € R,

1991 Mathematics Subject Classification. 35K05, 35K55, 49J20, 93B05, 93B18.
Key words and phrases. Null controllability, semilinear heat equation, constraint

on the normal derivative, Carleman inequality, observability inequality.

EJQTDE, 2012 No. 95, p. 1



and assume for simplicity that

(3) f(0) =0.
We denote y by y(x,t,v) to mean that the solution y of (1) depends

on the control v.

Null controllability problem with constraint on the control has been
studied by O. Nakoulima in [I, 2], for the parabolic evolution equa-
tion. Indeed, he solved in [2] the following null controllability problem
with constraint on the control: Given a finite-dimensional subspace
Y of L*(G) and y° € HY(Q), find a control v € Y1, the orthogonal
complement of Y in L*(G), such that the solution of

B Ay+ay = vxe inQ,
(4) y = 0 on,
y(0) = ¢ inQ,

satisfies y(T) = 0 in Q.

The proof uses an observability inequality adapted to the constraint.
The results obtained by O. Nakoulima allowed G. M. Mophou and O.
Nakoulima to prove the existence of sentinels with given sensitivity in
[3], and to solve a new type of controllability problem (see [1]): Given
e; in L*(Q), 1 < i< M, and y° € L*(Q), find a control v € L*(Q)
such that the solution of (4) satisfies y(T') =0 in Q and

T
(5) / / ye;drdt = 0,1 <1 < M.
0o Jao

We also refer to [5] where a boundary null controllability with con-
straints on the state for a linear heat equation is solved. G. M. Mophou
in [6] showed the null controllability with a finite number of constraints
on the state, for a nonlinear heat equation involving gradient terms.

In this paper, we focus on a null controllability problem with con-
straint on the normal derivative that we describe now.

Let {ej,...en} be a family of vectors of
HY(S) = {0l € H(S), 9(2,0) = 0,(x,T) = 0 in T}

and let & = Span({ej,...,e,}) be the span of the family of vectors

{e1,...en}. Suppose that:
(6) the vectors (e;);—1,..m are linearly independent on .
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The null controllability problem with constraint on the normal deriv-
ative for system (1) can be formulated as follows: Given f a globally
Lipschitz function of class C' on R satisfying (3), y° € L*(Q) and
e; € Hi(X) j =1,...,m satisfying (6), find v € L*(G) such that if y
is solution of (1), then

dy .
(7) <$7 €j>H—1(20),H3(20) =0;7=1,...,m,
and
(8) y(T)=0in O,

0
where v is the unit exterior normal vector of I, 9% is the normal de-
v
rivative of y with respect to v and (.,.)x x» denotes the duality bracket
between the spaces X and X'.

The main result of this paper is as follows:

Theorem 1.1. Let f be a globally Lipschitz function of class C* on
R satisfying (3). Then for any y° € L*(Q) and ¢; € HH(X) j =
1,...,m satisfying (6), there exists a unique control © of minimal norm
in L*(G), such that (0,7) satisfies the null controllability problem with
constraint on the normal derivative (1), (7) and (8). Moreover there

exists a positive constant C = C(Q,w, K, T,> 7", |le;||gi(x)) such that
(9) 18]l z2e) < Cllyllr2e).

The proof of this theorem will be the subject of the last section. The
rest of the paper is organized as follows. In Section 2, we show that
problem (1), (7), (8) is equivalent to a null controllability problem with
constraint on the control for a linearized system derived from (1). In
Section 3, we prove an observability estimate for the linearized system.
In Section 4, we use this estimate to prove the null controllability of
the linearized system. Section 5 is devoted to proving Theorem 1.1.

2. EQUIVALENCE WITH NULL CONTROLLABILITY PROBLEM WITH
CONSTRAINT ON THE CONTROL FOR LINEARIZED SYSTEM

We introduce the notation
s
ifs#£0
aop(s) = { ; 7

f(0) if s=0.
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In view of the globally Lipschitz assumption (2) on f, ag maps L*(Q)
into a bounded set of L>(Q). Moreover

(10) lao®)llz=(@) < K, ¥y € L*(Q),

K being the Lipschitz constant of f.
Thus, system (1) may be rewritten in the form

0 )
a—? —Ay+ao(y)y =vx, in @,

(1]‘) y|2 = 0’
y(0) =¢* inQ.

Given z € L*(Q), consider the linearized system

0
Y Ay+a(z)y = vxe inQ,
ot

y(0) = 3 inQ,

Since ap(z) € L>(Q), y° € L*(N2) and vy, € L*(Q), system (12) admits
a unique solution y in

L2(0, T5 HY(Q) N C((0, T]: ZA(2)).

Note that since y € L*(0,7T; H}(Q2)) and Ay € H~Y(0,T; L*(Q)), we
can define % on I' and % € H™Y(0,T; H 2(I')), which is a subset of
HY(X), the dual of H}(X).

Consequently our aim is: For any z € L*(Q), ao(z) € L=(Q), 3° €
L*(Q) and e; € Hy(X) j =1,...,m, to find a control v € L*(G) such
that the solution y of (12) satisfies (7) and (8).

As we said in the introduction, we show in the rest of this section that
problem (12), (7), (8) is equivalent to a null controllability problem
with constraint on the control.

For each e;, 1 < j < m, consider the adjoint of system (12):

_Z Ag; +ap(z)g; =0 in @,
(13) gj =e; on X,
¢ =0 on X\ 3,
¢(T) =0 in Q.

The following lemma holds:
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Lemma 2.1. Under the hypothesis (6), the functions g;x., 1 < j < m,
are linearly independent for any z € L*(Q).

Proof. Let v; € R, 1 < j < m, be such that

(14) Z%% =0in G.
j=1
Since g; is solution of (13) for each j € {1,...,m}, then > v;q; :== ¢
j=1

satisfies:

dq Aq+ ao(2) 0 n O

- - ap(z)qg = in

(15) gt~ AT ’

q = > e on Y.
Combining the first equation of (15) with (14), we deduce that, accord-

ing to a unique continuation property for the evolution equation, ¢ = 0
in ). Therefore, we have in particular ¢ = 0 on ¥,. Since the second
equation of (15) holds, the hypothesis (6) implies that v; = 0 for all
j€{l,...,m} and the proof of Lemma (2.1) is complete. u

If X is a closed vector subspace of L*(G), let us denote by X+ the
orthogonal of X in L?(G).

Proposition 2.2. There exists a positive real function 6 such that for
any z € L*(Q), there exist two finite dimensional vector subspaces U ,Uy
of L*(G), and uo(z) € Uy such that the null controllability problem with
constraint on the normal derivative (12), (7), (8) is equivalent to the
following null controllability problem with constraint on the control:
Given ag(z) € L™(Q), y° € L*(Q) and ug € Up, find

(16) ueut

such that if y is solution of

0
Y Aytaz)y = (wo+u)xe inQ,

ot
(17) Yy = 0 on X,
y(0) = y’ in Q,
then
(18) y(T) =0 in Q.
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Proof. Suppose that the null controllability problem with constraint
on the normal derivative (12), (7), (8) holds.
Since ag(z) € L=(Q) and e; € H}(X), j =1,...,m, for each j, system
(13) admits a unique solution ¢; in L*(0,T; H*(Q))NH(0,T; L*(Q)) :=
H1(Q).
Multiplying (12) by the solution g; of (13), then integrating by parts

over (), we obtain

[ oTamyin = [ y0)0)ds = (G sy

dq; dq;
+/yﬂdpdt+/y(—ﬂ—qujLao(z)qj)dxdt:/vqujd:cdt.
D 8V Q 8t Q

It follows that
dy
—/yo%(o)dfc— <8—7€j>H—1(zo),H01(zo) I/vqjd:cdt.
Q v p

In view of (7), we have
(19) — / y°q;(0)dz = / vg;dxdt.
0 a

1
Let U = Span({q1 Xw, - - -, dmXw}) and let Uy = 51/{. Then there exists
a unique uy € Uy such that for any j € {1,...,m},

(20) /uoqjdxdt: —/yoqj(O)dx.
G Q

Thus according to (19), we have

/ upqdrdt = / vg;dxdt, for any j € {1,...,m}.
e e

Therefore, v — ug € U+ and there exists u € U+ such that v = ug + w.
Now, replacing v by ug + u in (12), we obtain (17).

Conversely, suppose that for any z € L*(Q), ag(z) € L>®(Q) and
Yy € L*() are given, and that the solution y of (17) satisfies y(T) = 0
in Q. Let g;, j = 1,...,m, be the solutions of (13), u € U* and ug
satisfying (20). Multiplying (17) by ¢;, then integrating by parts over
Q, we have

y
—/yOQj(O)d{L‘—<a—,6j>H1(20)7]{6(20) :/uoqjdxdt+/qud:pdt.
Q v G G
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In view of (20), we get

dy
_<$7€j>H1(20),H%(20):/Udexdtu
G

which ends the proof of Proposition 2.2, because u € U™ . [ ]

Remark 2.3. The function ug is such that Oug € L*(G).
In the sequel, we will denote by P the orthogonal projection operator

from L*(G) into U.

3. OBSERVABILITY ESTIMATE

We prove in this section an observability estimate which is adapted
to the constraint, deriving from a global Carleman inequality due to
A. V. Fursikov and O. Yu. Imanuvilov [7].

Let 1 € C%(Q) be such that

() > 0 VeeQ,
(21) w(z) = 0 Veel,
IVi(z)] # 0 VeeQ—w.

Then, for any A € R7, define
e[| oo (o) +b(2))
t(T —t) ’

(22) pla,t) =

e2xml[YllLoo i pAm|Y]| oo (o t(x))

(23) (o, ) = e ,

for (z,t) € Q and m > 1.
We introduce the following notations

V = {peC>®Q);pls =0},

0

(24) Lp = 8—?—Ap+ao(2)p,
0

L*p = —a—i—Ap—l—ao(z)p,

where ay € L*(Q).
Carleman’s inequality can be formulated as follows:

Proposition 3.1 (Global Carleman’s inequality [7, 8]). Let ¥, ¢ andn

the functions defined respectively by (21), (22), (23). Then there exist
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Ao = M(Qw) > 1, 59 = s0(Quw,T) > 1 and C = C(Q,w) > 0 such
that, for X = Ao, s = so, and for any p € V, we have

/ 6—2377 @
o S¥ ot

(25) + / s* A P2 p| 2 dadlt
Q

2
+ \Ap|2> dxdt +/ sA\2pe” 2V p|2dxdt
Q

<C (/ e 2 L* p|* dadt +/ 53)\4g03625’7\p\2d:cdt) :
Q G
Since ¢ does not vanish on @), we set
(26) 0= 2,
and from (25), we deduce the following corollary:

Corollary 3.2 (1] p.546). There exist a positive real function 0 (given
by (26)) and a positive constant C' = C(Q,w, K,T) such that for any
p €V, we have

(27)
1
/|,0(0)|2dx+/ —2|p|2dxdt<0</ |L*p|2dxdt+/ |,0|2dxdt).
0 Q0 Q €

Now, we are going to state the adapted observability inequality. The

proof will require the two following lemmas.

Lemma 3.3. Assume (6). Let € L>=(Q) and let ¢;, 1 < j < m, be

the solution of

O :
Ay =0 i Q
(28) Y, =e; on Xy,
Y, =0 on X\,

Let p be a function in Span({11Xw, - - -, UmXw}) satisfying

dp :
P A =
(29) BT p+ pp 0 nQ,

p = 0 on.

Then p s identically null on G.
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Proof. Let p be a function in Span({¢1xw, .- ., ¥mXw}) satisfying
(29). There exist v, € R, 1 < j < m, such that p = Zijjxw. Set

j=1
o= nyjz/;j. Then we have according to (28),
j=1
0
_3_Z_AU+'LLU =0 in @,
o =il 7€Xs, on .
Since
o —p .
0D A p) o —p) =0 W Q

c—p =0 in G,

we deduce that ¢ = p in . In particular o|y = 0, which implies

that Z’Yj@szo = 0. From (6), we deduce that v, = 0 for all j €
j=1

{1,...,m}, then p =0 in G. |

Lemma 3.4 ([1, 0]). Let (H,(.,.)n) be a Hilbert space. For n € N*,
let {pn1,---,Dam} be a set of m linearly independent vectors of H and
let h,, in the span of {pn1,- .., Pum}. We assume that there exists a set
of linearly independent vectors {p1,...,pm} of H, such that

(30) Dni — D; strongly in H for 1 <i < m.
We also assume also that there exists a positive constant C' such that
(31) ||Pon] | < C,

where ||h,||g = (hn,hn)}f. Then we can extract a subsequence such
that

hn — h € Span({p1, ..., pm}) strongly in H.
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Proposition 3.5. There exists a positive constant C = C(Q,w, K, T)
such that for all z € L*(Q) and p €V,

(32)

1
/ |p(0)|2dx+/ —2|p|2dxdt <C (/ |L*p|*dxdt +/ lp— Pp|2d:pdt) .
Q Qf Q G

Proof. To prove (32), we argue by contradiction. If (32) does not
hold, then for any n € N*, there exist a sequence z, of L*(Q) and a

sequence o, of V such that:

1
(33) / |0,,(0) P da +/ E|o—n|2d:cdt =1,
Q Q

1

(34) / \L:o,|2dedt < —,
Q n

9 1
(35) |0y — Ppoy|“dedt < —,
G n

where Lfo, = —%" — Ao, + ap(z,)o, and P, denotes the orthogonal

projection operator from L?(G) into U(z,) = Span({q1(21)Xw; - - - » Gm(2n) Xw })-
For any n € N*, we have:

1
/G@\Pnanﬁd:cdt < 2(/ |an| d:cdt—i—/ 92| — P,o,| dxdt)

1 1
The term / ﬁ\anﬁd:cdt is bounded according to (33). Since 7 is

G
bounded, it follows from (35) that there exists a positive constant C
such that:

1
/ —2|Pncrn|2dxdt < Cl
ot

Since P,o, € U(z,) and U(z,) is a finite dimensional vector subspace

of L*(G), we deduce that:
(36) / | Pyo, |2dzdt < C.
e

But we have:

/\an\Qd:cdt /\P ol d:cdt+/ |0y — P d:cdt)
G
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Using (35) and (36), we deduce that:
(37) / o |*dxdt < C.
@

Consequently, there exist a subsequence of (o,), (still denoted by
(04)n) and o € L*(G) such that

(38) o, — o weakly in L*(G).

1
Now in view of (33) and the definition of g0 we deduce that (o,), is

bounded in L?((u, T — p) x Q),Vu > 0. Extracting subsequences, we
can deduce that:

o, — o weakly in L*((p, T — p) x Q),Vu > 0.
Therefore,
(39) o, — o in D'(Q).

Since for any z € L*(Q), ¢;(z), 1 < j < m is solution of (13) and
e; € H}(X), one can prove that ¢;(z) € H*Y(Q).

Moreover there exists a positive constant C' such that

(40) [l4;(zn)l[m21(@) < Cllesllaycs):

By extracting subsequences we may deduce that there exist 1; €
H?'(Q) such that for j € {1,...,m}

¢;(2,) — 1; weakly in Hz’l(Q).

As a consequence of the Aubin-Lions compactness Lemma, the injec-
tion from H*'(Q) into L*(Q) is compact so that for 1 < j < m

(41) ¢;(2,) — 9, strongly in L*(Q).

On the other hand, using (10), there exists a positive constant C' =
C(T, Q) such that

||a0(2n)||L2(Q) < C||a0(zn)||L°°(Q) < COK.

Consequently, there exist a subsequence of ag(z,) (still denoted by
ao(2,)) and p € L*(Q) such that

(42) ao(z,) — p weakly in L*(Q).
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Therefore in view of (40)-(42), ¥;, 1 < 7 < m is solution of

0, .
Ay = 0 @,
(43) Vilso = €,
Yilsms, = 0,

Since P,o0, € U(z,) and satisfies (36), we can apply Lemma 3.4 with

H = L*(GQ), pni = 4;(2n)Xw, hn = Pnoy. There exists g € Span({1Xw, - - -, YmXw})
such that

P,o, — g strongly in L*(Q).
On the other hand, it follows from (35) that
(44) 0, — Poo, — 0 strongly in L*(G).
We can deduce that
o, — g strongly in L*(G).
Hence from (38), we have:
(45) 0, — 0 = g strongly in L*(G).

We conclude that ox,, € Span({t1xw, -, UmXw})-

Since Lj, = 2 — A+ ag(z,)] is weakly continuous in D'(Q), we have

according to (39) and (42),

Lo, — —% — Ao + po in D'(Q).
But (34) implies that
(46) L:o, — 0 strongly in L*(Q),
we deduce that _88_;; — Ao + po = 0in Q. Since o,, € V satisfies (37)

and (46), we can apply (25) to o, and deduce that o, is bounded in
L*(Ju, T — pl; H*(Q)),VYu > 0. Then for any u > 0,

0, — o weakly in L*(|p, T — p[xT).

Consequently,
o, — o in D'(X).

Hence from o, |5 = 0, we have

0'|2 = 0.
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So o satisfies oy, € Span({1Xw,- - -, YmXw}) and

0
—8—Z—Aa+ua = 0 in @,
c = 0 onX.
Using Lemma 3.3, we deduce that:
c=01in G,

and (45) can be rewritten in the form
o, — 0 strongly in L*(G).

As (0,), satisfies (27), then

/Q|crn(0)|2dx+/Q =

_O'n

0

2
dxdt — 0,

which is in contradiction with (33). u

Let us now give a proposition that we will need to prove estimation

(9). The proof requires the following two lemmas:

Lemma 3.6. Assume (6). Let 0 be the function given by Proposition
2.2. Let q;, 1 < j < m and ug respectively defined by system (13) and
(20). For any z € L*(Q), set

1

Ay(2) = / aqi(z)qj(z)d:cdt, 1<, <m.
G

Then there exists § > 0 such that for any z € L*(Q),

(47) (Ag(2)X (2), X (2))rm = 01X (2)|[em,

where X (z) = (X1(2),..., Xn(2)) € R™ and
(Ag(2)X(2), X (2))zm = /G H > Xi2a2) (3 X5(2)ay (=) ) dadr

Proof. To prove (47), we argue by contradiction. If (47) does not
hold, then for any n € N*, there exist a sequence (z,), of L?*(Q) and a
vector X (z,) = (X1(2n), ..., Xin(2n)) of R™ such that

1
(Ag(z) X (20), X (z0) Jmm < —[1X (z0) |-
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Set X (z,) = Xl then
(18) Kl = (D15 E0P) =1
(49) (Ao() X (z0), K ) < -

Consequently, there exist subsequences of Xj(zn), 1 <7 < m (still
denoted by X;(z,)) and X, € R such that for 1 < j < m,

(50) X;(2,) — X; in R.
Moreover,
. = 9\ ?
(51) K llen = (DO 1%2)° = 1.
j=1

Now let ¢, = Z;ilf(j(zn)qj(zn). Then from (40), (41), (50) and
Lemma 3.4, it follows that

O — ijj ‘= ¢ strongly in L*(Q).

NE

1

<.
Il

But we deduce from (49) that

1 -~ ~ ~ 1
| 316zt = (An() X a), X))o < 1
G n
1 -~ 3
SO / 5\¢\2d:cdt =0and ¢ =0in G.
G ~
Since 1;, 1 < j < m is solution of (43), ¢ satisfies:
9é - N
2 Notub = 0 me

Az, = 0y Xey.

We deduce that ¢ = 0 in @, which implies that Z;nzl Xjej = 0 on X.

In view of assumption (6), X; = 0 for all j € {1,...,m}, which is in
contradiction with (51). n

Proposition 3.7. Let 0 be the function given by Proposition 2.2, and

let ¢j, 1 < j < m and ug respectively defined by system (13) and (20).
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Then there exists a positive constant C = C(Q,w, K, T, > 7", |lej g1 (x))
such that for any z € L*(Q),

(52) lluo(2)l]22(6) < Clly°llz2@),
<

10uo(2)|] 2y < ClIY°l 20

Proof. In view of (20), we have for any z € L*(Q),
(53) / ug(2)q;(2)dzdt = — / v°q;(2)(0)dz, 1 < j < m.
e Q

Since ug(z) € Uy(z), there exists a(z) = (a1(2), ..., @n(2)) € R™ such
that

59 w() = 3 ) gl)x

So (53) can be rewritten in the form

/ Zal (2)dwdt = / 0 (2)(0)dz, 1< j < m.

Therefore,
(55)

/ (ZO‘Z 2)qi(z )(Zaj 2)qi(z d:cdt / Za] 2)q;(z

Now applying Lemma 3.6 to the left-hand-side of (55), we get

oG < = [ 430 as(as(2)0)ds

Using the Cauchy-Schwarz inequality for the right-hand-member of the
latter identity, it follows that

(56) Olle(2) [z < "l 2oy Z\O@ )I-145(2) (0)]] 2 (@)

Since g; is solution of (13) for 1 < j < m, we have in addition to (40),
the following energy inequality,

a;(2)(0)]]r2(0) < C|| H HA(S)-
QTDE, 2012 No. 95, p. 15



Consequently, we obtain according to (56),

1
2

la(2)lzm < 0 CllY 2@l ()| [rm (Z ||6j||fqg<z)>
j=1

Moreover, if follows from (54) that for any z € L?(Q),

1
2

)Ila(Z)IIRm (Z ||qi(2)lliz(a)> ,

1
ol < 5

Leo(@Q

2

10uo(2)l]2(c) < [ev(2)]]mem (Z ||Qi<z)||%2((;)>
i=1

Hence

1
2

3 Clly 2o <ZH€J'||?{3(2>> )
i=1

1
ol 120 < H
6
L>°(Q)

2

[10uo ()] 22y < 0 CllYll2(e) <Z ||6j||?{5(z)> :
=1

which ends the proof of the Proposition. [ ]

4. NULL CONTROLLABILITY OF THE LINEARIZED SYSTEM

We begin by proving the existence of a solution for problem (16),
(17), (18).
We define on V x V the following symmetric bilinear form:

(57) b(p,0) = /QL*,OL*crdxdt + /G(,O — Pp)(o0 — Po)dzdt.

In view of Proposition 3.5, this bilinear form is an inner product on V.
Let V =V be the completion of the pre-Hilbert space V with respect

to the norm

(58)  blp.p) = ( [ \epasa + | |p—Pp|2dxdt)
Q G

The completion V' of V is a Hilbert space.

Lemma 4.1. For any p eV, let

£lp) = | woxapdadt + [ 4p(0)de.
Q
¢ EJQTDE, 2012 No. 95, p. 16



Then for any z € L*(Q), there exists a unique pg = po(z) € V such
that

b(po,0) = L(o) Vo€V,

i other words,

(59) /L*ng*crdxdt+/(pg — Ppp)(0 — Po)dzdt = / U Xwodxdt
Q G Q
+ / y’o(0)dz, Yo € V.
Q

Proof. According to the Cauchy-Schwarz inequality, the bilinear
form b(.,.) is continuous on V' x V' and by definition, it is coercive on
V. Moreover for every o € V, it follows from (32) that, the linear form
L is continuous on V. Therefore in view of the Lax-Milgram Theorem,
for any z € L*(Q), there exists a unique pp € V such that for allo € V,

we have:
b(pea 0) = ‘C(U)a

and the proof of Lemma 4.1 is complete. |

Proposition 4.2. For any y° € L*(Q) and z € L*(Q), let py be the
unique solution of (59). We set

(60) ug = —(po — Ppo)Xw,

Then (ug,ya) is solution of the controllability problem (16), (17), (18).
Moreover there ezists a positive constant C' = C(Q,w, K, T, E;nzl el m1es))
such that:

(62) lpallv < Clly°ll 2@,
(63) uol| 2y < ClY°|| 2,
(64) ol z2@) < Clly°l 2.
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Proof. On the one hand, since pg € V, we have uy € L*(G) and
yo € L*(Q). On the other hand, since Ppy € U, uy € U+. Replacing
—(ps — Ppy)x. and L*py respectively by ug and yy in (59), we get:
(65)

/ygL*adazdt—/ug(a—Pa)da:dt:/uoxwadxdt+/yoa(0)da:,
Q G Q Q

for any o € V. In particular for ¢ € Z(Q), we obtain:

(66) (Yo, L™ 0) 7 (0),2(Q) — (UoXw,> D) 2(Q),2(Q) = (UoXw, ) 2/(Q),2(Q)-
We deduce that

(67) Lyp = (uo + ug) X in Q.

As yp € L*(Q) = L*(0,T;L3*(R)), we have on the one hand % €
H=Y(0,T; L*(2)), and from (67),

Ayg = + aoyy — (uo + ug)Xxw € H'(0,T; L*(2))

0Yp
ot

0
since agyy — (uo + ug) X € L*(Q). Therefore, yg|x and % exist and
vis

belong respectively to H=1(0,T; H~2(T")) and H=1(0,T; H~%(T)) (see

[9])-
On the other hand, Ay, € L*(0,T; H2(€2)) and from (67), we have:

8199

ot
Consequently, ¢ — yg(z,t) is continuous from [0, 7] into H~!(Q), which
means that ys(T') and y4(0) are well defined in H~1(Q) (see []).
Multiplying (67) by ¢ € C*°(Q) then integrating by parts over @ yield:

= Ayg — aoyp + (uo + ug)xw € L*(0,T; H*(2)).

(68) (yo(T), o(T)) 102,122y — (¥0(0), 9(0)) 111,13 ()

< 8?/0 [0)0)

' ¢> L(0,T;H™ % (1)), H} (0,T;H (F))+<y9’ %>H*1(O,T;H_% (), H2 (0.T;H 2 (")

+ / Yo L* pdxdt = / UpXwpdxdt + / uppdxdt.
Q Q G

In particular for ¢ such that ¢ = 0 on X, we have according to (65),

(Yo(T), &(T)) 5-1(0),11 ) — (Y0(0), #(0)) —1(0), H2.(02)

W0 g i b ok ay /Qy 9(0)dz =
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which is equivalent to

(wo(T), (1)) -1, m2 () + (¥° — w6(0), 6(0)) g-1(2). 113 (@)
¢

%>H71(07T;H‘%(F)),H%(OvT;H%(FD =0

+ (Yo,

Choosing successively ¢ such that ¢(7') = ¢(0) = 0 in €2, then ¢(0) =0
in €2, we conclude that:

9 = 0 onX,
yG(T) = 0 n Q)
y(0) = y* inQ

We deduce that (ug, yg) is solution of (16), (17), (18).
Now let us take o = py in (59), we have

©9) Il + 1wl ey = [ woxapadsde+ [ 1*pa(0)ds
Q 0

which according to the definition of the norm in V' given by (58), is

equivalent to

(70) [lpell¥ = /Q uoXwpedadt + /Q 0o (0)dz.

Therefore, it follows from the Cauchy-Schwarz inequality and (32) that

(71) o]t < C(l0uoxllzz@) + 1y llz2@)lpollv-

Applying Proposition 3.7, (71) can be reduced to (62). (63) and (64)
follow from (69) and (70). n

Proposition 4.3. For any z € L*(Q), there exists a unique control
@ = u(z) such that

il 2@y = min{||ul| 2y, v € F}

where F = {u = u(z) € L*(G); (u,y) satisfies (16),(17),(18)}. More-
over, there exists a positive constant C = C(Q,w, K, T, Y 5" |lej|[ g1 (x))
such that

(72) lal| 22y < ClY° L2y
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Proof. Proposition 4.2 guarantees that the set F is non empty.
Since F is a closed convex subset of L?(G), we deduce the existence

and the uniqueness of the optimal control 4. Therefore

@l 22y < [|uollr2) < ClYl| r2)-

We now arrive at the main result of this section.

Theorem 4.4. Assume (6). Then for any z € L*(Q), there exists a
unique control i = u(z) of minimal norm in L*(G) such that (u,y) is
solution of the null controllability problem with constraint on the control
(16), (17), (18). Furthermore, the control @ is given by

where p = p(z) satisfies
L' = :
(74) P 0 @,
pls = 0.

Moreover, there exists a positive constant C = C(Q,w, K, T, 27:1 ;]| masy)
such that

(75) |51 v
(76) 1Al]2(c)

Proof. We divide the proof into three steps.
Step 1: Let € > 0 and z € L*(Q), and let A be given by

Cly° |2,

NN

Clly°||L2e)-

A={(wy)u=u(z) U y=y(2) € L*(Q), Ly € L*(Q),ylz = 0,y(T) =0
in Q and y(0) = »° in Q}.

For every pair (u,y) of A, we define the functional

1 2 1 2
(77) Je(u,y) = §||u||L2(G) + 2_€||Ly — (uo + U)XwHL?(Q),
and we consider the optimal control problem:
(78) inf{Je (u, y)|(u, y) € A}.

We show that for every € > 0, problem (78) has a unique solution.

Indeed, since (ug,yg) € A, A # 0 and J. is bounded from below (by
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0), we deduce that inf{J.(u,y); (u,y) € A} := I, exists. Let (upn,yn) =
(u(2n),y(z,)) be a minimising sequence of A, so Ing € N, ¥n > ny,

(79) o < L) < L+

But we have

(50) I+ < i, 0) = lluel ey

Consequently in view of (79), (80) and (63), there exists a positive
constant C' = C(Q,w, K, T, 7", |lej||u1(z,)) such that Je(un, yn) <
C*1y°||Z2(q- Due to (77), we have
(81) |unl|L2()
(82) || Lnin — (w0 + un)Xw || 22(0)

Clly°ll 2oy,

CVelly| |2,

with L, = 2 — A+ay(z,)]. Combining (81) and (82), we have accord-
ing to (52),

(83) | Lnynll12@) < C\/gHyOHLQ(Q)'

It follows from (81) and (83) that there exist a subsequence of (u,)

<
<

(still denoted by (u,)), a subsequence of (y,) (still denoted by (y,)),
u. = u.(2) € L*(G) and & € L*(Q) such that

(84) u, — u. weakly in L*(Q),

(85) Loyn — & weakly in L*(Q),

and we have u, € U+ which is a closed vector subspace of L2(G). Let
W(0,T) be defined by

W(0,T) = {¢ € L*(0,T; Hy(2)), % € L*(0,T; H1(Q))}.

Since (un,yn) € A, we have y, € W(0,7T) and due to (83) and the
regularizing effect of the heat equation, we can write:

(86) 1ynllwor < CVElYllL2@)-

So there exist a subsequence of (y,) (still denoted by (y,)) and y. =
y:(z) € W(0,T) such that

(87) Yn — Y. weakly in W(0,T).
But for any ¢ € Z(Q), we have:

(Lnyn, ¢>@’(Q),@(Q) = <yn> L:ﬁb)@' Q),2(Q)»
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with L7 = —2 — A + ag(2,)]. Passing to the limit n — +oc in the
latter equality, we get using (85), (87) and (42):
(88)
99
(& D)o @),2@) = (e, —

dy
E—AQHM@.@'(Q),@() <8t —AYet11Ye, O) 7(0),2(Q)-

Thus 8(%6 — Ay + py. = & and (85) can be rewritten in the form:

0y,
(89) Ly = == = Ay + pye weakly in L*(Q).
— Ay + py. € L*(Q) and y. € L*(0,T; H}(2)), we can define
e | .
as in page 18, yc|s in H=1(0,T, H2(I)), 6y in H1(0, T, H2(I)),
vis

y.(0) and y.(T) in H(Q).
Now let ¢ € C*(Q) be such that ¢|s; = 0. Using Green’s Formula, we
have

/Q (Layn)pdzdt = — /Q ¢ (0)dx + /Q Yn(L: p)ddt.

In view of (89), (87) and (42), we can pass to the limit n — 400 in the

previous relation:

/ <aat — Ay + ,uy€> ddrdt = / 0 6(0)dz + /Q yg( . % YN uqb) ddt

- /Q Y’ 0(0)dz — (y=(T), (1)) -1 (), 13 ()

+ (¥:(0), #(0)) 5-1(0), 13 (02)
¢

— (., 8_>H*l(O,T,H—l/Q(F)),H%(0,T7H1/2(F))

+ / (aat Ay5+uy5)¢>dxdt

V¢ € C*°(Q) such that ¢|sx = 0.

Hence,

(y=(0) — y $(0)) - Q),HL(Q) — (ys(T)¢(T)>H—1(Q),H3(Q)

0¢ 00
— (Ye, 5>H—1(O,T,H*1/2( 0)),HL(0,T,HY/2(T)) = =0,vp el (Q)

such that ¢|yx = 0.
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Choosing successively ¢ such that ¢(0) = ¢(7") = 01in €2, then ¢(T) =0
in €2, we find that y. satisfies:

ys‘E = 0,
(90) v:(0) =y inQ,
y(T) = 0 in Q.

Consequently (u.,y.) € A. J being lower semicontinuous, we have

Je(uaaya) < h_m Ja(unayn) - Ia-

n—-4o0o

Therefore J.(ue,y.) = I.; the uniqueness is the consequence of the
strict convexity of J..

Step 2: We give the optimality system which characterizes the
optimal solution of problem (78). The Euler-Lagrange optimality con-

ditions which characterize (u.,y.) are given by:

d
@Js(us + Nuay€>|,u=0 =0, Vu e UJ_’

d
@JE(UH Ye + M¢)|M:0 =0,V¢ € C7(Q)

such that ¢y = 0,¢(0) = ¢(T) = 0 in 2.

After some calculations, we have

1
(9% usudrdt — . / <Ly5 — (uo + ug)xw>uxwdxdt =0,Yu e U+,
G Q

(92) = (e o+ wpwe oot = 0,96 € (@)
such that ¢|s = 0,¢(0) = ¢(T) = 0 in Q.
Set p. = E(Ly6 — (uo+u5)xw>. Then p. = p-(z) € L*(Q) and we have
Ly. = (up + ue)Xw +cp- in Q,
which in addition to (90), gives:

Lys = (uO + uE)Xw + €pe in Qv

y6|2 - Oa
93
(93) y(0) = o° in €,
ye(T) = 0 in .
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1
Replacing B (LyE — (up + ug)xw) by p. in (91) and (92) yields,
(94) / usudxdt — / peuxodrdt =0, Yu € U+,
G Q

(95) / peLodzdt = 0, ¥ € C=(Q)
Q

such that ¢|x, = 0,¢(0) = ¢(T) =0 in Q.

Relation (94) is equivalent to / (us — po)udzdt = 0, Yu € U*, hence

G
Us — peXw € U. We deduce that u. — p-x» = P(us — p:Xw) and since
u. € U, we can write u. = poxo — Pp-.
Relation (95) holds in particular for ¢ € 2(Q),

(P, LO) (@), 2(Q) = (L pey ®) 7(0),2(q) = 0.

Consequently;,
(96) L*p. =01in Q.
Since L*p. € L*(Q) and p. € L*(Q), we can define as in page 18, p.|x

mn
1 8p
H=Y0,T,H2(T =
0,7, H72(1)), 57|,

H7YQ).
Multiplying (96) by ¢ € C*(Q), then integrating by parts over Q, we
have:

in H-4(0,7, H 2(I)), p-(0) and p.(T) in

(97) — (p(T), ¢(T)>H*1(Q),H5(Q) + (p=(0), ¢<O>>H*1(Q),H%(Q)
dpe 9¢
_<E’ ¢>H—1(O,T;H’%(F)),Hé 0,1;H3 (1) + (e, 5>H—1(0,T,H’%(F)),Hé (0,T,H3 (1))

+ / p-Lodxdt = 0.
Q

Choosing ¢ such that ¢|y = 0,$(0) = ¢(T) = 0 in 2, and using (95),

relation (97) can be rewritten in the form:

8¢ _

(pe, $>H—1(0,T,H‘%(F)),Hg(o,T,H%(F)) =0, for any function ¢ € C*°(Q) such
that ¢l = 0,6(0) = 6(T) = 0 in ©,

and we conclude that p.|s = 0.
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In summary, we have proved that (ue,y.) is the optimal solution
of (78) if and only if there exists a function p. such that the triplet
(Ue, Ye, pe) satisfies the following optimality system:

(98) Ue = PeXw — Ppa

Lys = (uO + us)Xw + €pe in Qv

ys‘E = 07
99
(59) y-(0) = ¢ in Q,
ye(T) 0 in §,
pels = 0.

Step 3: We establish some useful estimates and we end the proof
of the main theorem.
From (81), (82), (84) and (89), there exists a positive constant
C=Cw, KT, llejl|ui(x)) such that:

(101) el z2(e) < ClIY°lr2e),

(102) [12ye = (o + ve)Xullz2@) < CVEIY ll12(0).
Relation (102) and the fact that y. is solution of (99) imply:
(103) yellwo.r) < ClY° 2

In view of (98), it follows from (101) that:

(104) | pexw — Ppellrz@) < CllYll 2@

and since p. satisfies (100),

(105) [1ollv < Clly 2

Now applying inequality (32) to p. yields,

1
- < Cly° :
1577y < Ol

and
L2(G)

1
We have ’ éPp8

1
L2 L2(G) + HEPan

1
< n ew_Pa
© Hg(px pe)

1
since g€ L>(Q), then

1
°p
He Pe

) < Oyl |2 ()

L2 (G
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Since Pp. € U and U is a finite dimensional vector subspace of L*(G),
we deduce that:

(106) 1Ppellzzie) < Cllyll -
Using again (104), we obtain

(107) 102l 22(6) < Clly°ll2(@)-

By extracting subsequences, we have according to (101), (103), (105),

(106) and (107),

(108) ue — @ = () weakly in L*(G),
(109) y. — 7§ = y(z) weakly in W(0,T),
(110) pe — p = p(z) weakly in V|

(111) Pp. — v = i(z) weakly in L*(G),
(112) pe — p weakly in L*(G),

andsoueUt, veU.

Since the injection from W (0,T) into L*(Q) is compact, (1, 7) is solu-
tion of the null controllability problem with constraint on the control
(16), (17), (18).

We know, based on Proposition 4.3, that there exists a unique control
@ of minimal norm in L?(G), such that problem (16), (17), (18) holds.

So, we have
Lo Lo
§||U||L2(G) < §||UHL2(G)-
Now, let g be the solution of (17) corresponding to @; then we have

oy X X AN
5 — A+ an(2)j = (wo+ i)x. in Q.

(ue, ye) being the optimal solution of (78), we have:
1 R 1,
M3 Sl Baey < o) < i) = Sl
But because of (108), we can also write:
Ly~ o]
(114) §||UH%2(G) < hran_}gﬂ 5”“5“%2((;)7

and we deduce that @ = 4.
In view of (114), (113) and (72), the following estimate holds:

(115) |2 < Clly°||2 o)
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where C'= C(Q,w, K, T, > 77" [lejl|mi(x)) is a positive constant.
On the other hand, p. satisfying (100), it follows from (110) that,
L'p = 0 inQ,
pls = 0.
Furthemore, (104) implies that
PeXw — Ppe —g Weakly n LQ(G)a

so ¢ = ¢(z) € Ut and in view of (111) and (112), p = 7 + <. We
conclude that 7 = Pp and

PeXw — Pp. — p— Pp weakly in L*(G).

(75) and (76) are consequences of (105), (107), (110) and (112), which
establishes Theorem 4.4. |

5. PROOF OF THEOREM 1.1

For any 2z € L*(Q), we showed that there exists a unique control
@ = u(z) such that (@, y(a)) satisfies (16), (17), (18). Therefore in view

of Proposition 2.2, there exists a unique control © = 9(z) satisfying
(116) 0= (up + ) Xw,

solution of the null controllability problem with constraint on the nor-
mal derivative (12), (7), (8). As a consequence of (116), (115) and (52),
we have

(117) 19122y < CllY Il 2.
Thus, we have built a non-linear mapping

S: LYQ) — L*Q)
z — S(z) =79(0)
where §(?) is the solution of (12) corresponding to the control v =
(ug + @)Xw, With ug € Up and @ € UL is defined by (73) and (74).
The problem is then reduced to finding a fixed point of §. Indeed,
if 2 € L?(Q) is such that S(z) = §(0) = z, the solution 7 of (12) is
actually solution of (11). Then, the control v is the one we were looking
for, since by construction, §(v) satisfies (7) and (8).

In order to conclude the existence of a fixed point of S, we can use
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Schauder’s fixed point Theorem. So it is sufficient to check the following
three properties:

S is continuous,
S is compact,
the range of S is bounded, i.e. IR > 0;[|S(2)]|12(q) < R,Vz € L*(Q).
5.1. Continuity of S. We divide the proof into five steps.
Step 1: Let (z,), be a sequence of L?(Q) and assume that z, —
2z strongly in L?(Q). Then there exists a subsequence (z,, ) such that

Zn, () — z(z) almost everywhere in Q. f being a function of class C"*,

the function ag is continuous and is such that
ao(2zn, (x)) — ap(z(x)) almost everywhere in Q).

In view of (10), we have |ap(2,,(2))] < K and as a consequence of

Lebesgue’s Theorem,
(118) ao(2n, ) — ao(z) strongly in L*(Q).

Step 2: The control @, = 0(z,,) is such that the solution ¢, =
9(0p,,) of

Dijn - N - .

Zci)tk - Aynk + aO(’an)ynk = UnpXw 1D Q,
(119) Jnls = 0,

Un,(0) = ¢° in €,

satisfies
(120) <ag”k ) =0;7=1

W7€J H=1(20),Hd (Z0) — =Ly
and
(121) Un,(T) =0 in Q.
Moreover, vy, is given by
(122) {}nk = (UO(an) + ﬁ/nk)xuﬂ

where on the one hand, uy(zy,, ) € Up(2n,) = Span({%ql(znk)xw, . %qm(znk)xw})

satisfies in view of (20),

(123) / (2 )5 (2 )t = — / 104 () (0)d,
G
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with g;(2,,) solution of

(124)
aQ' Zn .
_% - qu(znk) + aO(an)qj (an) =0 m Q?
qi(zn,) =e; on X,
¢i(zn,) =0 on X\ X,
q;(2n, )(T) 0 in O
On the other hand, u,, = u(z,,) is given by
(125> ank = ﬁ(znk)Xw - Pnkﬁ<znk>7
where p(z,,) € V solves
0p(zn ~ ~ .
(126) % - Ap(’znk) _'_ ao(’znk>p(’znk) = 0 m Q?
plzn)ls = 0,

and P,, denotes the orthogonal projection operator from L?(G) into
U(zn,) = Span({q1(2n, ) Xw; - - - @m(2n, ) Xw}). Furthermore, in view of
(75), (76), (52), (115) and (117), there exists a positive constant C' =
C(Quw, K, T,377" |lejll gy (sy) such that

127 p(za) v < ClIY"ll 2,

(127) <

(128) 19z 22c) < ClYl| 2@
(129) o (zn)l 2@ < ClIY N2
(130) 16uo(zn ) 22y < CllY°ll2 (@)
(131) |l ll22c) < Clly° 22
(132) | On || 20y < CHZJOHL2(Q)-

By extracting subsequences, we may deduce that

(133)

(134) p(2n,) — p weakly in L*(G),
(135) uo(2n,) — = weakly in L*(G),
(136) Oug(2y,, ) — 1 weakly in L*(Q),
(137) (@)

p(2zn,) — p weakly in V,

iy, — u weakly in L*(Q),
and so u € U. Hence from (122), we have

(138) Uy, — (T + 1), = vX, weakly in L*(Q).
EJQTDE, 2012 No. 95, p. 29



Step 3: Since g, solves (119), we have according to (132),

(139) 1 lwo1) < Clly°llz2@),

where C' = C(Q,w, K,T,> 77" |lej|lgix)) - On the one hand, we de-
duce that
On
1% <,
Volla-m)
on the other hand, by Aubin-Lions compactness Lemma, it follows that

(140) U, — ¥y strongly in L*(Q).

Therefore, using (118), (138), (139) and (140), we can pass to the limit
k — 400 in (119), (120) and (121) and we obtain that (v,y = y(v))
satisfies

5 —Aytao(z)y = vxe inQ,

y|2 = 07
y(0) = ¥* mQ,
dy .
<$76]’>H*1(20),H6(20) =07=1....m,
and
y(T) =0 in Q.

Step 4: ¢;(z,,) being solution of (124), we have in view of (40),

(141) 19 (Czn)llza@) < Cllejllag ),

and once again, by Aubin-Lions compactness Lemma, it follows that
for j € {1,...,m},

(142) qj(2n,) — ¥; strongly in L*(Q).
Moreover, we also have the following energy inequality
(143) 1145 (2, ) (0)[| 22 (0) < C||€j||Hg(2)-

Passing to the limit & — 400 on (124), we obtain according to (118),
(141) and (142),

o .
—% —A¢jt+ag(z)y; = 0 in@,
Vils, = €,
Yilsys, = 0,
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Thus for each e;, 1 < j < m, 1; solves (13). From (143), we get for
jed{l,....m}

(144) 050 )(0) = 15(0) weakly i L2(Q)

The uniqueness of the solution of (13) implies that forall j € {1,...,m},

(145) ¥i(2) = q;(2).

Step 5: Since Ougy(z,,) € U(z,,) and (130), (142), (145) and (136)
hold, we can apply Lemma 3.4 with H = L*(G), h, = Oug(2n, ), Pni =
¢;(2n,.), Pi = qj, we deduce that there exist a; € R, 1 < j < m such
that

Oug(zn,) — 1 = Z ;g strongly in L*(G).

J=1

Then, using (135) and the fact that 3 is bounded in L*(Q),

1

1 m
(146)  wo(zn,) = éeuo(znk) —r=y Zajqj strongly in L*(G).

j=1
In view of (146), (142), (144) and (145) , we can pass to the limit
k — 400 in (123),

/ xq;(z)dzdt = —/ v°q;(2)(0)dz, 1 < j < m.
G Q
The function ug € Uy given by (20) being unique, we conclude that

Since 1, € U(z,, )", we have

/ﬂnkqj(znk)dxdt =0,1<j<m.
G

Passing to the limit £ — +o0 in the latter identity, we obtain according
to (137), (142) and (145),

/ ugj(z)dzdt =0,1 < j < m.
G

We deduce that u € U+,

Since p(zy,,) € V satisfies (126) and (128), we can apply (25) to p(zy, )
and deduce that p(z,,) is bounded in L*(]3,T — 3[; H*(Q)),V5 > 0.
Then for any 3 > 0,

p(zn,) = p weakly in L*(18,T — 3[x9),
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p(2n,) — p weakly in L*(]3,T — B[xTI).
Consequently,
pzn,) = pin D'(Q),
Flzn) — p in D(5).
Therefore,

_9p(zn,)
ot

Hence from (126), we have

Lp = 0 inQ,
pls = 0.

) ) .0 o
Az )+ 0(20,)pln,) = L'p = =5 =Ap-+ag(2)p weakly in D'(Q).

Using (125) and (131), there exists a positive constant
C=0Qw K, T,57" |lejllgis)) such that

(148) 16(zn, )X = Pap(zn )2y < ClY° o).
Now applying (32) to p(zy,, ), we get
I
(149) | <l
L2(Q)

Arguing as in the proof of Proposition 3.5, we deduce from (148) and
(149) that

(150) 1P (20| 226y < ClYlL2(0)-
Consequently, P, p(z,,) being in U(z,, ), we can apply Lemma 3.4 with
H = L*(G), hy, = P, p(2n), Pri = q(2n,,), pi = q;, according to (142),
(145) and (150). We conclude that,
(151)
P p(zn,) — 7 €U(2) = Span({q1(2)Xw, - - - » Gm(2)Xw}) strongly in L*(G).
Now in view of (125), (134), (137) and (151), we get
(152)  @in, = p(2n, ) X0 — Paif(2n,) = pXo — T = u weakly in L*(Q).
Since u € U+ and 7 € U, we have Pu = 0 and Pt = 7. From (152), it
follows that Pp — 7 = 0. Then 7 = Pp and u = px, — Pp = 4. Using
(138) and (147),

UV = Ug =

+u=wv.
It results that (7, 7) satisfies (12), (7), (8).
EJQTDE, 2012 No. 95, p. 32



5.2. Compactness of S. The arguments above shows that when z lies
in a bounded subset B of L?(Q), §(7) = S(z) also lies in a bounded
set of W(0,T). As a consequence of Aubin-Lions compactness Lemma,
W (0,T) is a compact set of L?(Q). Then, S(B) is relatively compact
in L?(Q). This completes the proof of the compactness of S.

5.3. Boundedness of the range of S. Let z € L*(Q). Since ¢(?) =
S(z) solves (12) with © satisfying (9), we have

150 203309 < ClY° o)

with C' = O(Q,w, K, T, 377", |lejl| 1)) The embedding of L*(0, T'; Hy (€2))
into L?(Q) being continuous, it follows that

17(0)]] 2y < ClIY°]| 220

This concludes the proof of Theorem 1.1.
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